Fast Community Identification by Hierarchical Growth

نویسنده

  • F. A. Rodrigues
چکیده

A new method for community identification is proposed which is founded on the analysis of successive neighborhoods, reached through hierarchical growth from a starting vertex, and on the definition of communities as a subgraph whose number of inner connections is larger than outer connections. In order to determine the precision and speed of the method, it is compared with one of the most popular community identification approaches, namely Girvan and Newman’s algorithm. Although the hierarchical growth method is not as precise as Girvan and Newman’s method, it is potentially faster than most community finding algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Analysis of Critical Activities of Firefighting Department for Structural Fire Scenarios Using Task and Training Requirements Analysis (TTRAM)

Introduction: Increasing the civil incidents including residential fires is a consequence of population growth and development of cities. Residential fire is one of the most important scenarios requiring fast response. Fire response operation encompass various and serious risks for responding team members. Therefore, the present study looks for determining the critical tasks of fire operation r...

متن کامل

A Comparison of Agglomerative Hierarchical Algorithms for Modularity Clustering

Modularity is a popular measure for the quality of a cluster partition. Primarily, its popularity originates from its suitability for community identification through maximization. A lot of algorithms to maximize modularity have been proposed in recent years. Especially agglomerative hierarchical algorithms showed to be fast and find clusterings with high modularity. In this paper we present se...

متن کامل

Multi-Criteria Risk-Benefit Analysis of Health Care Management

Abstract Purpose of this paper: The objectives of this paper are two folds: (1) utilizing hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable RFID-based systems decision, and (2) to highlight key risks and benefits of radio frequency identification technology in healthcare industry. Design/methodology/approach: R...

متن کامل

BoCluSt: Bootstrap Clustering Stability Algorithm for Community Detection

The identification of modules or communities in sets of related variables is a key step in the analysis and modeling of biological systems. Procedures for this identification are usually designed to allow fast analyses of very large datasets and may produce suboptimal results when these sets are of a small to moderate size. This article introduces BoCluSt, a new, somewhat more computationally i...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006